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Finite field arithmetic logic is central in the implementation of Reed-Solomon coders
and in some cryptographic algorithms. There is a need for good multiplication and
inversion algovithms that can be easily realized on VLSI chips. Massey and Omura
recently developed a new multiplication algorithm for Galois fields based on a normal
basis representation. In this paper, a pipeline structure is developed to realize the
Massey-Omura multiplier in the finite field GF(2™ ). With the simple squaring property of
the normal-basis representation used together with this multiplier, a pipeline architecture
is also developed for computing inverse elements in GF(2™ ). The designs developed for
the Massey-Omura multiplier and the computation of inverse elements are regular, simple,
expandable and, therefore, naturally suitable for VLSI implementation.

l. Introduction

Recently, Massey and Omura (Ref. 1) invented a multiplier
which obtains the product of two elements in the finite field
GF(2m). In their invention, they utilize a normal basis of form
{a, a2 a*, -+, &™) to represent elements of the field
where « is the root of an irreducible polynomial of degree m
over GF(2). In this basis each element in the field GF(2™) can
be represented by m binary digits.

In the normal-basis representation the squaring of an ele-

ment in GF(2™) is readily shown to be a simple cyclic shift of
its binary digits. Multiplication in the normal basis representa-
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tions requires for any one product digit the same logic cir-
cuitry as it does for any other product digit. Adjacent
product-digit circuits differ only in their inputs which are
cyclically shifted versions of one another. In this paper, a
pipeline architecture suitable for VLSI design is developed for
a Massey-Omura multiplier on GF(2m).

The conventional method for finding an inverse element in
a finite field uses either table look-up or Euclid’s algorithms.
These methods are not easily reélized in a VLSI circuit. How-
ever, using a Massey-Omura multiplier, a recursive, pipeline,
inversion circuit is developed. This structure consists of four




sets of shift registers, one parallel-type Massey-Omura multi-
plier and two control signals. Such a design is regular, simple
and expandable and, hence, naturally suitable for VLSI imple-
mentation.

ll. Squaring and Multiplying in a Normal
Basis Representation

In this section, the work originally described by Massey and

Omura (Ref. 1) is reviewed. It is well known that there always
exists a normal basis in the finite field GF(2™) (Ref. 2) for all
positive integers, m. That is, one can find a field element o
such that N={a, a2, o*,---, 02D} is a basis set of
GF(2™). Thus every field element § € GF(2™) can be uniquely
expressed as

-1
20D

= 2 4
B=byatba®tbya”t---+b

(1)

where by, by, by, -
mod-2 addition.

, b,,_, are binary digits and addition is

Three useful properties of a finite field GF(2™) are stated
here without proof (for proofs see, for example, Ref. 2). These
properties are:

(1) Squaring in GF(2™) is a'linear operation. That is, given
any two elements « and § in GF(2™),

(@B = o? +p* @

(2) For any element a of GF(2™),
? =a 3)

(3) If « is a root of any irreducible polynomial P(x) of
degree m over GF(2), the powers, a, o2, o*, -,
a2=1) are in GF(2™M) and constitute a complete set
of roots of P(x).

With regard to property (3), Peterson and Weldon (Ref. 3) list
a set of irreducible polynomials of degree m-< 34 over GF(2)
for which the roots {a, &2, %, -, a2(m"1)} are linearly
independent. These linear independent roots clearly form a
normal basis of GF(2™).

Suppose that {o, o?, at, - ',az(m_l)} is a normal basis of
GF(2™). By (2) and (3) the square of (1) is

m

2 4 8 4... (m-1) 2
B* = by +b ot +bo®+ - +b, 02 *b,

1}

bm—l

a+b0a2+b1a4+'-'bm_2a2(m_l) 4)

Thus, if B is represented as a vector of components of the
normal basis elements of GF(2™) in the form g = [by, b,
by, "+, bp_q],thenp? =1[b, 4, by, by, ", b,,_,]. Inthe
normal basis representation 82 is a cyclic shift of 8. Hence
squaring in GF(2") can be realized physically by logic cir-
cuitry which accomplishes cyclic shifts in a binary register.
Such squaring circuitry is illustrated in block form in Fig. 1.

By (2) and (3) it is readily seen that | =+ o2ttt
a2~V for any element & in GF(2"™). This implies that the
normal basis representation of 1 is (1, L, 1).

Let 8= [by, by, -, b,,_;] andy=[cq, ¢y, ", ¢, _ ;]
be two elements of GF(2™) in a normal basis representation.
Then the last term d,, _, of the product,

8 =8v=1[dy,d,, .d, 1, (5)

is some binary function of the components of § and v, i.e.,

oy = Fy by by 13 Gl TGy

6

Since squaring means a cyclic shift of an element in a normal
basis representation, one has

52 = g2+ 42
= [bm-l’ bo’bl’”.’bm—2] >(7)
615 C0r €05 Oy ]
= [dm—l’ dO’ dl’ tre ’dm_z]

Hence the last component d,,,_, of 82 is obtained by the same
function fin (6) operation on the components of #? and 2.
That iS, dm_2 = f(bm—l’ bO’ bl’ Uty bm__z; cm—l’ Co>»
€15 " Cpy_q)- By squaring & repeatedly, it is evident that

Ay =F By bys by 1300 €175 Cpyy)

sV
d, _, =f(bm~1, bo’_bl’ by, ol

Cm1s €0 €12 Cp) > ®

dy =fy by by b

' Ym—1’ 0;

cl! cz’.-.’cm_l’ co) )
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The equations in (8) define the Massey-Omura multiplier.
In the normal basis representation this multiplier has the
property that the same logic function f which is used to find
.the last component of d,, _, of the product § can be used to
find sequentially the remaining components d,,_,,

dm—S’ sy d0 of the product. This feature of the product
operation requires only one logic function f of the 2m compo-
nents of § and v to sequentially compute the m components of

the product.

Figure 2 illustrates the logic diagram of the above-described
sequential-type Massey-Omura multiplier on GF{(2™). Alter-
nately, for parallel operation this feature permits the use of m
identical logic functions, f, for calculating simultaneously all
components of the product. In the latter case, the inputs to
the m logic functions f are connected directly to the compo-
nents of 8 and ~, The only difference in the connections to the
components of § or vy to a function fis that they are cyclically
shifted versions of one another. Figure 3 shows the structure
of the parallel-type Massey-Omura multiplier for the simple
case of m=4. The extension of this type of structure to a
general case of GF(2™) is straightforward.

lif. A Pipeline Structure for Implementing
Massey-Omura Multiplier

A detailed design of a Massey-Omura multiplier is now
developed for the finite field GF(2*). As illustrated in Figs. 2
and 3, the design of either the sequential-type or parallel-type
Massey-Omura multiplier must focus on the product func-
tion f.

The design of f begins with the selection of an irreducible
polynomial P(x)= x* + x3 + 1 of degree m =4 over GF(2).
This particular polynomial function has linearly independent
roots, namely, &, o, o* and o. Hence, the set of roots {a,
o2, o*, o} constitutes a normal basis of GF(24). Any two

elements § and 7y in GF(2*) can be expressed as

- 2 4 8
B =byjatb o’ th,a"tb o
)
- 2 4 8
Y =c ate a +cza te,a
By (9) the product of 8 and vy is
5 =ﬁ")’=(b006+b1062+b20(4+b3a8)
. 2 4 8
(cpate o te, a ey a) (10)

2 4 8
d0a+d1a +d20z +d3a
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By (10) and the fact that o* = a® + 1, one obtains
dy =bye, T by, tbyeytbyey T hicy
+ b3c0 + boc3 + b1co + boc1

d, =bc tbhye, thie, thyc,+hyc,

+ bZC3 + b302 + bocs * b3c0

~~
—
—
e

d, = boc0 + blco + b0c1 + b103 + b3c1

+ blc2 + b201 + b302 + bzc3

d, = by, + by, + by, tbyc, tboc,
tbye, tbeytbye thc, /
Comparing (11) with (8), the function fis given by
P by by bys €gy €45 €50 C5)
= b,c, tbye, thye, tbye thc,

+ b300 + b003 + blco + boc1

(12)

Since the mod-2 sum in (12) can be implemented by the
“exclusive or” operation (XOR), the structure of the product
function f can be represented by the logic circuit in Fig. 4.
This circuit consists of two portions; the left half is an AND
plane which computes each term of (12), while the right half is
XOR plane which computes the mod-2 sum. The inputs to the

" AND plane are the complements of the components of § and

7. This is due to the fact that the AND operation in the AND
plane is obtained by the NOR operation on the complements
of the two digits béing ANDed, i.e., xy = (x + ) where X is the
complement of Xx. ’

A pipeline structure of a Massey-Omura multiplier for
GF(2% is shown in Fig. 5. This structure has a sequential type
of operation. For each of the two inputs, corresponding to §
and v, to the ffunction, an inverter, two sets of shift registers,
B and R, and 11 gate transistors are utilized. Note that regis-
ters B and R have an identical circuit structure.

In Fig. 5 during the first three clock cycles, when signal

LD =0, the complements of b3, b2, bl and €y €,y €, ATE fed




sequentially into three buffer flip-flops B, for (k= 1, 2, 3). At
the fourth clock cycle, when Ld =1, the values of b bz' 21
and ¢ Cy ¢,, ¢, previously stored in buffer reglstersB and b

and ¢, are shifted into the second set of reglsters R, for
(k=1,2,3,4). Then the R-registers are cyclically shifted.
Such a cyclic-shift operation is needed to sequentially yield
the product components dj, d,, d, and d, of §. While the
R-registers are cyclically shifting the components of 8 (or ),
the components of another element in GF(2%) following 8
(or ¥) can be fed into the buffer B-registers. Therefore, the
structure in Fig. 5 provides a pipeline operation in which no
time is lost except for an initial fixed time delay. The VLSI
layout of a Massey-Omura multiplier for GF(2*) is shown in

Fig. 6.

Figure 7 illustrates a system structure of a pipelined
Massey-Omura multiplier for GF(2™). For this general case
over GF(2™), the buffer and the cyclic shift mechanism in
Fig. 7 have m~- 1 and m stages, respectively. Each stage con-
sists of a shift register and a gate transistor. The product
function f is a mod-2 sum of AND products of the compo-
nents of the two inputs being multiplied. Such a circuit for
function f consists of an AND programmed logic array (PLA)
(Ref. 4) followed by an XOR sequential-PLA. In the XOR
sequential-PLA there are several levels of XORs. At each level,
the inputs, pair-by-pair, are fed sequentially one-by-one into
an XOR as shown in Fig. 4.

Let n(j) be the number of XOR circuits at the j-th level of
the XOR sequential PLA. Then n(j + 1) = [n(j)/2] where
[x] is the smallest integer greater than x and where initially,
n(0) = total number of terms to be XORed in product func-
tion f. At the last level, there is only one XOR circuit and the
output is the value of f. In general, if £ denotes the number
of levels required in the XOR sequential-PLA, & = [log,n(0)].

It should be noted that as m gets large, the number of
mod-2 sums in the function f becomes large. In this case, more
XORs and as a consequence more levels in the XOR sequen-
tial-PLA are required. To maximize the pipeline operation
speed, shift registers are required between the XOR levels in
order to store the XOR outputs of the intermediate levels.

Another approach to the realization of product function f
is to use a standard AND-OR PLA (Ref. 4). This is possible
since x + y'=xy v x3 where v denotes inclusive OR. In general,
although the design of f by the use of such a PLA is tedious,
the product function f can be accomplished in less than one
clock cycle. One trade-off for such a design is the large chip
area required. The required area for such a PLA increases
dramatically with 7. Hence, a design utilizing a standard
AND-OR PLA to realize fis practical only for small .

IV. A Pipeline Structure for Computing an
inverse Element in the Flmte Field
(GF(2m))

For any « in the finite field GF(2™), a2™ = «. Hence the
inverse of a is o~ ! = a2™~2, Let 2™ - 2 be decomposed as
2+22 + 28 4 ...+ 2m=1 then o™ ! can be expressed as

-@- @) @)@y )
As discussed in Section II, if & is represented in a normal basis,
squaring can be realized by a cyclic shift operation. o?’ is the
J-th cyclical shift (CS) of a. Thus, the inverse element o1 can
be obtained by using successive cyclic-shift operations and a
Massey-Omura multiplier. The algorithm for ol is the
following:

(1) Obtain the cyclic shift of &, i.e., o? = CS(c) where CS
denotes the cylic shift function. Let B= CS(a) and

C=1.Letk=0.

(2) Multiply B and C to obtain the product, D =B « C. Set
k=k+1.

(3) fk=m- 1,0 =D.Stop. If k<m~- 1, let B=CS(B)
and C'=D.

(4) Go back to (2).
Figure 8 shows a flow chart diagram of this procedure.

This recursive algorithm for computing an inverse element
in GF(2%) can be realized using the circuit shown in Fig. 9. In
this circuit the parallel-type Massey-Omura multiplier shown in
Fig. 3 with the circuit for the product function f shown in
Fig. 4 is utilized.

To illustrate, let Ld, and Ld, be two control signals with
period of four clock signals as shown in Fig. 9. Also let the
normal basis representation of « be (ao, 4, a, a3). At the end
of the third clock pulse, the values'dl, 672, 53 are stored in the
input buffer flip-flops B,, B,, Bj, respectively. During the
four clock cycle, @, @, 4, and a, are simultaneously shifted
to R, R, R, and R4, respectively. With the appropriate
connectlons among the input buffer flip-flops B, and flip- ﬂops
R, , the cyclic shift of &= (@, a,, a,, a,), 1e @ = (@,

'dl, Ez) is obtained in R. At the fourth clock pulse R R R
Ry are also fed the value “0”. These four complementary
values of “1” introduce the element 1 in GF(2%).

0’

As it was discussed in Section II, a parallel-type GF(2%)
Massey-Omura multiplier simultaneously yields four product
components d, d,, d,, d,. Therefore, during the next three
clocks three successxve mult1p11cat10ns ie,B, =1" o? B, =
Bl « o* and ﬁ B « a8 are performed for the inversion.
When the thlrd multlpllcatlon is completed, Ld = 1, Thus
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the output product digits, which together represent the
inverse element o', are fed into the output buffer flip-flops
B, . Finally these are sequentially shifted from the inversion
circuit,

The above technique for computing the inverse of an ele-
ment in GF(2%) takes four clock cycles. During these four

clock cycles, the circuit in Fig. 9 allows the bits of the next

element (following &) to be fed into it and the bits of the
previous element to be shifted out of it, simultaneously. This
type of circuit provides a full pipeline capability. A VLSI
layout of the pipeline inversion circuitry for GF(2%) is pre-
sented in Fig. 10. Figure 11 shows the system structure of an
inversion circuit for the general finite field FG(2™).
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Fig. 1. The squaring operation foranormal-basis representation over GF(2/)
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Fig. 3. Architecture of parallel-type Massey-Omura multiplier over GF(2%)
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Fig. 6. Layout of a Massey-Omura multiplier for GF(29)
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